
Minia-GATB — Short manual
R. Chikhi & G. Rizk & E. Drezen & D. Lavenier

rayan.chikhi@ens-cachan.org

March 26, 2018

Abstract

Minia is a software for ultra-low memory DNA sequence assembly.
It takes as input a set of short genomic sequences (typically, data
produced by the Illumina DNA sequencer). Its output is a set of
contigs (assembled sequences), forming an approximation of the ex-
pected genome. Minia is based on a succinct representation of the
de Bruijn graph. The computational resources required to run Minia
are significantly lower than that of other assemblers.

Contents

1 Forewords 1

2 Installation 2

3 Parameters 2

4 Explanation of parameters 3

5 Input 3

6 Output 4

7 Selection of graph simplification steps 4

8 Fine-tuning of graph simplification steps 4

9 Memory usage 5

10 Disk usage 5

11 Reproducibility 5

12 Influences 5

1



1 Forewords

Minia 3 is a completely new version that no longer uses Bloom filters. In terms
of goals, not much has changed: Minia remains a contigs assembler using very
low memory. Notable changes since Minia 1/2 are:

• Faster k-mer counting step

• Different graph construction step (uses BCALM software to construct
unitigs)

• Different graph representation (not a Bloom filter, but an indexed list of
unitigs)

• SPAdes-style graph simplifications

2 Installation

See Github page.

3 Parameters

The basic usage is:

./minia -in [input file] -kmer-size [kmer size] -out [prefix]

Not much has changed since Minia 2 but we recommend that you still read
the next section for an updated explanation of parameters.

An example command line is:

./minia -in reads.fastq -kmer-size 31 -out minia_assembly_k31

The main parameters are:

1. in – the input file(s) (see Section 5 for inputting multiple files)

2. kmer-size – k-mer length (integer)

3. prefix – any prefix string to store output contigs as well as temporary
files for this assembly

4 Explanation of parameters

kmer-size The k-mer length is the length of the nodes in the de Bruijn graph.
It strongly depends on the input dataset. For proper assembly, we rec-
ommend that you use the Minia-pipeline that runs Minia multiple times,
with an iterative multi-k algorithm. That way, you won’t need to choose
k. If you insist on running with a single k value, the KmerGenie software
can automatically find the best k for your dataset.

2



abundance-min The abundance-min is a hard cut-off to remove likely erro-
neous, low-abundance k-mers. In Minia 3, it is recommended to set it to
2 unless you have a good reason not to. Minia 3 also implements other
ways to remove erroneous k-mers, using a more adequate relative cut-off,
in the graph simplifications step.

Setting abundance-min to 1 is not recommended, as too many erroneous
k-mer will be kept, which will likely result in a very large memory usage.
If the dataset has high coverage, it may be worth it to try larger values.

prefix The prefix parameter is any arbitrary output files name, for example,
test_assembly.

These are the main two parameters that control the quality of assembly.
Minia command line has a few more parameters but they are either for advanced
usage, or just minor tweaks. Some are described in the rest of this manual.

5 Input

Larger k-mer lengths

Minia supports arbitrary large k-mer lengths. To compile Minia from the
source, to support k-mer lengths up to, say, 320, type this in the build
folder:

rm -Rf CMake*

cmake -DKSIZE_LIST="32 64 96 128 160 192 224 256 320" ..

make -j 4

The list of kmers should only contain multiples of 32. Intermediate values
are used to create optimized code for k values that are shorter than the
max. The last k value specifies the highest kmer size that can effectively
be used in this compiled version of Minia. Apart from that, whatever k
values are in this list do not affect the assembly quality in any way.

FASTA/FASTQ

Minia assembles any type of Illumina reads, given in the FASTA or FASTQ
format. Giving paired or mate-pairs reads as input is OK, but keep in mind
that Minia won’t use pairing information.

Multipe Files

Minia can assemble multiple input files. Just create a text file containing
the list of read files, one file name per line, and pass this list as the first pa-
rameter of Minia (instead of a FASTA/FASTQ file). Therefore the param-
eter input_file can be either (i) the read file itself (FASTA/FASTQ/compressed),
or (ii) a file containing a list of file names.

Line format

In FASTA files, each read can be split into multiple lines, whereas in
FASTQ, each read sequence must be in a single line.

3



Gzip compression

Minia can direclty read files compressed with gzip. Compressed files should
end with ’.gz’. Input files of different types can be mixed (i.e. gzipped or
not, in FASTA or FASTQ)

6 Output

The output of Minia is a set of contigs in the FASTA format, in the file
[prefix].contigs.fa.

Creating unitigs

Minia will also output unitigs in the FASTA format. Those are non-branching
paths in the de Bruijn graph prior to any graph simplification. File: [prefix].unitigs.fa.

7 Selection of graph simplification steps

By default, Minia performs 3 types of graph simplifications: tip removal, bulges
removal, and erroneous connections removal. Those are similar to SPAdes. You
can selectively ask to not perform any (or all) of those operation through those
command line arguments: -no-tip-removal, -no-bulge-removal, -no-ec-removal.

8 Fine-tuning of graph simplification steps

Most of the graph simplification steps are highly inspired by the SPAdes assem-
bler.

A regular user needs not modify any of the graph simplifications parameters.
Yet, for advanced users, it is possible to do so in order to increase or reduce the
aggresiveness of variant/error removal.

Tip removal implements two modes: ”short tips” removal and ”longer tips”
removal. Short tips are removed no matter what their coverage is. By default,
a tip is considered short if it is of length ≤ 3.5k. Longer tips are of length
≤ 10k. They are removed if their coverage is smaller than some constant times
the average coverage of the neighbor unitigs.

To make tip clipping more conservative, I would recommend specifying a
high -tip-rctc-cutoff cutoff, such as -tip-rctc-cutoff 20. This will make
sure that the coverage of a tip is at least 20 times smaller than the coverage of
its neighbors.

An explanation of the other simplifications steps is coming later. For now you
can try to guess using slide 11 of http://cristal.univ-lille.fr/~chikhi/
pdf/2017-august-3-biata.pdf.

9 Memory usage

We estimate that the memory usage of Minia is in the order of 1 GB of RAM per
gigabases in the target genome to assemble. It is independent of the coverage of
the input dataset, provided that the abundance-min parameter is not too low.

4



10 Disk usage

Minia writes large temporary files during the k-mer counting phase. These
files are written in the working directory when you launched Minia. For better
performance, run Minia on a local hard drive, SSD, or (very large) ram disk.

11 Reproducibility

Default Minia parameters do not ensure a deterministic execution: due to e.g.
multi-threading, the results may change a little bit between executions (but
should still give more or less the same assembly). To make sure that results
are perfectly identical between runs on the same data and the same parameters,
run with these options: -nb-cores 1 -nb-glue-partitions 200.

12 Influences

This version of Minia could not exist without inspiration taken from these great
pieces of software:

• khmer https://github.com/dib-lab/khmer

• KMC2 https://github.com/marekkokot/KMC

• SPAdes http://bioinf.spbau.ru/spades

5


